It is noted that an antivenine is produced for the closely related Green Pit Viper, *T. popeorum*, the bite of which causes lymphatic swellings amongst other symptoms. Whilst there is apparently no necessity for a specific antivenine for the infrequently encountered Shore Pit Viper (as none is in fact produced) it would seem worthwhile to examine the application of that of the Green Pit Viper for use in case of bites of the former.

REFERENCES

C.B. and D.W. Frith
P.O. Box 200, Phuket, Thailand.

II. Re-discovery of *Riopa haroldyoungi* Taylor, 1962.

The second known specimen of *Riopa haroldyoungi* Taylor, 1962, was collected in December of 1974 by a malaria eradication team, in Tambon Ratanawapi, Nong Khai province, on the highway between Phon Phi Sai and Nong Khai. Collected during the day, it was evidently a road kill, judging from the slightly damaged condition of the left side of the head and the skin of the middle back. The Nong Khai locality is more than 500 km. from the type locality (the base of Doi Suthep, Chiang Mai province), suggesting that the species may not be extremely rare in nature, but rather that it has been so seldom collected due to secretive habits and habitats.

The Nong Khai specimen (Way #182), now deposited with the National Reference Collection at the Applied Scientific Research Corporation of Thailand (ASRCT), was initially identified by the author in January of 1975; the specimen was subsequently sent to Dr. E.H. Taylor of the University of Kansas, the author of the species. Confirming the
identification, Dr. Taylor states that he is "...certain that it is not a species different from *R. haroldyoungi*, not even a subspecies" (pers. comm. 1975). The specimen agrees closely with the type in all respects (see Table 1) except the pattern of coloration which differs on the two specimens: the bands and reticulations are variable in size, number, and relative body position (see photos).

Table 1. Comparative body measurements of known specimens of *Riopa haroldyoungi*.

<table>
<thead>
<tr>
<th></th>
<th>Type</th>
<th>Way 182</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total length</td>
<td>150 mm</td>
<td>220 mm</td>
</tr>
<tr>
<td>Snout to vent length</td>
<td>136 mm</td>
<td>108 mm</td>
</tr>
<tr>
<td>Vent to tail tip</td>
<td>14 mm*</td>
<td>112 mm**</td>
</tr>
<tr>
<td>Snout to arm insertion</td>
<td>29 mm</td>
<td>28 mm</td>
</tr>
<tr>
<td>Axilla to groin</td>
<td>97 mm</td>
<td>95 mm</td>
</tr>
<tr>
<td>Arm</td>
<td>11 mm</td>
<td>11 mm</td>
</tr>
<tr>
<td>Leg</td>
<td>12 mm</td>
<td>15.5 mm</td>
</tr>
<tr>
<td>Width of head</td>
<td>12 mm</td>
<td>11 mm</td>
</tr>
<tr>
<td>Length of head</td>
<td>18 mm</td>
<td>16 mm</td>
</tr>
<tr>
<td>Snout to ear</td>
<td>16 mm</td>
<td>16 mm</td>
</tr>
<tr>
<td>Greatest body width</td>
<td>13.6 mm</td>
<td>11.5 mm</td>
</tr>
<tr>
<td>Mid-body scale count</td>
<td>40-42</td>
<td>35-38</td>
</tr>
</tbody>
</table>

* Tail entirely lost, regeneration begun.
** Tail-tip lost, regeneration begun.

No ecological data has been published for the species, though several inferences may be safely drawn from the external morphology and topography. The elongate body form and the reduced limbs with clawed digits both suggest a fossorial existence, but the color pattern, head structure and scaleation, and the position of the forelimbs all bespeak a less specialized habitat. The distinctive colour pattern is not typical of the truly fossorial species, which are usually unicolour white, grey, or black, or one dorsal colour and one ventral colour rather, the head-shape and the presence of a distinctive colour pattern are reminiscent of
Fig. 1. *Riopa haroldyoungi* Taylor. Type. From Taylor, Univ. Kansas Sci. Bull., vol. 43, no. 7, 1962, Fig. 12.

Fig. 2. *Riopa haroldyoungi* Taylor. Way. On deposit at the Vertebrate Collection, Applied Scientific Research Corporation of Thailand, Bangkok.
Fig. 1. *Riepa haroldyouni* Taylor. Type. From Taylor, Univ. Kansas Sci. Bull., vol. 43, no. 7, 1962, Fig. 12.

Fig. 2. *Riepa haroldyouni* Taylor. Way 6182. On deposit at the Vertebrate Collection, Applied Scientific Research Corporation of Thailand, Bangkok.

Fig. 1. Head of *Riepa haroldyouni*. Note ear-opening (arrow), scaled lower eyelid and exposed nostril.

Fig. 2. Right fore-foot of *Riepa haroldyouni*. Note clawed digits.
several species of semi-fossorial, legless skinks such as *Isopachys* goldenstouti. The forelimbs are positioned so far back from the snout (28-29 mm.) and are so reduced (11 mm. long) as to make them relatively useless for burrowing. These reduced limbs could, however, be useful in aiding the typical undulating locomotion of the terrestrial skinks, or in moving through the secretive habitats of semi-fossorial species: e.g., accumulated forest litter, matted forest floor vegetation, or the organic accumulations associated with fallen logs. It is therefore suggested that the species he sought in habitat types such as deciduous or evergreen forests with a year-round accumulation of plant detritus.

Acknowledgements

I wish to express my appreciation to Dr. Prasert Lohavanijaya, Dr. Nipan Ratanavorabhan, Nivesh Nadee, and Supachai Sittilet of the Applied Scientific Research Corporation of Thailand for calling the specimen to the author’s attention and kindly loaning it for study. Special thanks to Dr. E.H. Taylor are in order for confirming the identification and giving advice and comments. Thanks also go to Dr. Boonsong Leakul, of the Association for the Conservation of Wildlife of Thailand, under whose supervision this study was completed.

REFERENCES

William K. Way

Association for the Conservation of Wildlife of Thailand, U.S. Peace Corps Volunteer.

III. An Interesting Spider found in Thailand.

In 1844 ‘Dr. Cantor’s Malayan Sketches’ in the Zoological Society’s library included an unmistakable painting of *Liphistiella desolator* under the name of *Mygale chiton* but as his sketches were never published it was the former name by SCHOUTE (1849) which takes priority.¹

Examination of later specimens of this and other species of Liphistiodae convinced many authorities that their segmented bodies and other primitive characters justified a special sub-Order, Liphistionomorphae, for their inclusion and spiders apparently resembling them were found as fossil forms in Carboniferous rocks. Doubt, however, exists as to whether they should be included in the sub-Order Mygalomorphae to which they are certainly more closely related than to the Araneomorphae.

A monograph on the nine known species of Liphistiodae was published by the present writer in 1933.¹ This examined their external and internal structure (the latter carried out by Mons. J. Millot) together with their habits and distribution. The distribution was confined to Burma, Malaysia, Sumatra, Vietnam, northern China and Japan. Since that date one more species *Mygalomorpha desolator* Gertsch has been described from Szechuan, China.³

Extensive search in the Philippines and Ceylon, and preliminary search in Thailand, had convinced the writer that Liphistiodae were not to be found there. In 1933, however, when accompanied by Miss C. Faltermeyer she found the trapdoor of one in the hills at Doi Suthep, close to Chiang Mai, Thailand. Together we found fifteen others in the same bank close to the house of Kraisat Nimmanhaeminda whose guests we were. All, unfortunately, were immature specimens but they can be attributed provisionally to the Burmese species, *Liphistiella birmanicus* Thor.

The burrows were in a more or less vertical bank of red decomposing granite facing a north-westerly direction. None were found in other banks with different aspects. This avoidance of the midday sun is as also noted when searching for *L. desolator* in Penang in January, 1973.